martes, 1 de diciembre de 2015

coeficiente y teorema del binomio

Coeficiente binomial

Los coeficientes binomiales, números combinatorios o combinaciones son números estudiados en combinatoria que corresponden al número de formas en que se pueden extraer subconjuntos a partir de un conjunto dado. Sin embargo, dependiendo del enfoque que tenga la exposición, se pueden usar otras definiciones equivalentes.

Definición combinatoria

{5\choose 3}=10, pues hay 10 formas de escoger (en rojo) 3 objetos a partir de un conjunto con 5 elementos
Se tiene un conjunto con 6 objetos diferentes {A,B,C,D,E,F}, de los cuales se desea escoger 2 (sin importar el orden de elección). Existen 15 formas de efectuar tal elección:
A,B A,C A,D A,E A,F

B,C B,D B,E B,F


C,D C,E C,F



D,E D,F




E,F
El número de formas de escoger k elementos a partir de un conjunto de n, puede denotarse de varias formas:  C(n,k)\, , n\, C\, k\,,  C^n_k\, , o  {n\choose k}. Así, en el ejemplo anterior se tiene entonces que C(6,2)=15, puesto que hay 15 formas de escoger 2 objetos a partir de un conjunto con 6 elementos.
Los números C(n,k) se conocen como «coeficientes binomiales», pero es frecuente referirse a ellos como «combinaciones de n en k», o simplemente «n en k». Por tanto, la primera definición es:

El coeficiente binomial  {n\choose k} es el número de subconjuntos de k elementos escogidos de un conjunto con n elementos.
Es importante notar que la definición asume implícitamente que n y k son naturales, y que además k no excede a n. Podemos definir C(n,k)=0 si k>n, puesto que no es posible escoger más elementos que los que tiene el conjunto dado (por tanto hay cero formas de hacer la elección). Estas precisiones cobrarán relevancia más adelante cuando se discutan generalizaciones del concepto (por ejemplo, cuando n o k sean negativos o cuando no sean números enteros).

Definición algebraica

Hay 5×4×3 formas de escoger ordenadamente 3 objetos de un conjunto con 5.
La definición no permite calcular el valor de los coeficientes binomiales, salvo listando los subconjuntos y contándolos. Sin embargo, existe una fórmula explícita que nos proporciona el valor de C(n,k).
Supongamos que el conjunto original tiene 5 elementos, de los cuales se deben escoger 3. Al momento de escoger el primero, se tiene 5 opciones disponibles, pero una vez fijo el primero, sólo hay 4 opciones para el segundo, y por tanto sólo 3 opciones para el último (pues no se puede repetir los escogidos en los primeros 2 pasos). De este modo, la selección puede hacerse de 5×4×3=60 formas.
Sin embargo, en tal conteo, el orden en que se escogen los elementos hace diferencia. Por ejemplo, tomar C, luego B, luego E, es una selección diferente de tomar B, luego C y luego E. Pero en la definición de coeficiente binomial, no importa el orden en que se eligen los objetos, únicamente cuáles se escogen. Por tanto, las elecciones BCE, BEC, CEB, CBE, ECB y EBC son todas equivalentes. Del mismo modo, las elecciones ABC, ACB, BCA, BAC, CAB y CBA son equivalentes, y así para cualquier terna de letras.
De esta forma, el resultado obtenido (60) no es la cantidad de subconjuntos de 3 elementos de {A,B,C,D,E}, sino que cada subconjunto está contado 6 veces, por lo que la cantidad de subconjuntos es realmente 60/6 = 10.
El argumento presentado para el ejemplo puede generalizarse de la siguiente forma. Si se tiene un conjunto con n elementos, de los cuales se van a escoger k de ellos, la elección (ordenada) puede hacerse de
n × (n-1) × (n-2) ×... × (n-k+1)
ya que en el primer paso se tienen n opciones, en el segundo se tienen n-1, en el tercero n-2, y así sucesivamente, terminando en el paso k que tendrá n-k+1 opciones.
Ahora, hay que dividir el producto anterior entre el número de selecciones «equivalentes». Pero si se tiene k objetos, hay k! formas de permutarlos, es decir, k! formas de listarlos en distinto orden. Recordemos que k! se lee k-factorial y es igual a
k! = 1×2×3×...× k
Concluimos que el número de subconjuntos con k elementos, escogidos de un conjunto con n elementos es
 {n\choose k} = \frac{ n(n-1)(n-2)\cdots (n-k+1)}{1\cdot 2\cdot 3 \cdots (k-1)\cdot k}.
Multiplicando el numerador y el denominador de la fracción por 1×2×3×···×(n-k)
 {n\choose k} = \frac{ 1\cdot 2\cdot 3\cdots (n-k)\cdot (n-k+1)\cdots (n-2)\cdot (n-1)\cdot n}{(1\cdot 2\cdot 3\cdots k)\Big(1\cdot 2 \cdot 3\cdots (n-k)\Big)}
La expresión anterior puede escribirse de forma más compacta usando factoriales, expresión que es usada en ocasiones como la definición misma de coeficiente binomial (sobre todo en textos elementales que no explican el origen combinatorio de la misma):

El coeficiente binomial {n \choose k} está dado por la fórmula {n\choose k} = \frac{n!}{k! (n-k)!}
La formula anterior es válida si

 n >= k >=0




Teorema del binomio

En matemática, el teorema del binomio es una fórmula que proporciona el desarrollo de la potencia n-ésima de n (siendo n, entero positivo) de un binomio. De acuerdo con el teorema, es posible expandir la potencia (x + y)n en una suma que implica términos de la forma axbyc, donde los exponentes b y c son números naturales con b + c = n, y el coeficiente a de cada término es un número entero positivo que depende de n y b. Cuando un exponente es cero, la correspondiente potencia es usualmente omitida del término. Por ejemplo,
(x+y)^4 \;=\; x^4 \,+\, 4 x^3y \,+\, 6 x^2 y^2 \,+\, 4 x y^3 \,+\, y^4.
El coeficiente a en los términos de xbyc - xcyb es conocido como el coeficiente binomial \tbinom nb o \tbinom nc (los dos tienen el mismo valor).

Formulación del teorema

Este teorema establece: Usando la fórmula para calcular el valor de {n\choose k} (que también es representado ocasionalmente como C(n,k)\, o C^n_k ) se obtiene la siguiente representación:
(x+y)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} x^{n-k} y^k
El coeficiente de x^{n-k}y^k\, en el desarrollo de (x+y)^n\, es {n\choose k}
donde {n\choose k} recibe el nombre de coeficiente binomial y representa el número de formas de escoger k elementos a partir de un conjunto con n elementos. Usualmente el teorema del binomio se expresa en la siguiente variante:
(x+y)^n=\sum_{k=0}^n {n \choose k}x^{n-k} y^k={n \choose 0}x^n + {n\choose 1} x^{n-1} y+{n\choose 2}x^{n-2}y^2 + \cdots + {n\choose n-1}xy^{n-1} + {n\choose n} y^n

Ejemplo

Como ejemplo, para n=2, n=3, n=4, utilizando los coeficientes del triángulo de Pascal:
(2)\begin{cases}
(x + y)^2 = x^2 + 2xy + y^2\\
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\\
(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \end{cases}
Para obtener la expansión de las potencias de una resta, basta con tomar -y en lugar de y en los términos con potencias impares de y. La expresión (2) queda de la siguiente forma:
(x-y)^2=x^{2}-2xy+y^{2}\,


No hay comentarios.:

Publicar un comentario